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RESEARCH MEMORANDUM

APPLICATION OF SUPERSONIC VORTEX-FLOW THEORY TO THE
DESIGN OF SUPERSONIC IMPULSE COMPRESSOR-
CR TURBINE-BLADE SECTIONS

By Emanuel Boxer, James R. Sterrett, and John Wlodarski
SUMMARY

A method for designing shock-free supersonic impulse compressor
and turbine blades in which the blade passage 1s essentially the space
between two concentric circles is presented. Since the shock-free super-
sonlc flow between two concentric circles is a vortex flow, the problem
is one of designing an entrance to the circular-arc passage which will
convert the uniform entering flow to the required vortex dlstribution
and vice versa at the exit. The coordinates of many transition arcs
have been computed and are included in tabular form. The resulting
sections are all related to one another so that changes in the design
variables can be investigated independently in cascade and the perform-
ance of a section for particular rotor conditions may be deduced from
tests of representative sections.

Three methods of increasing the thickness, partlcularly near the
leading and trailing edges, are presented although not experimentally
investigated. The passage shape was investigated for its ability to
start supersonically and the maximum design inlet Mach number for
starting was determined for given vortex-blade parameters.

Cascade test results of four blade passages designed to turn the
flow 120° at an inlet Mach number of 1.57 showed reasonable agreement
with predicted surface static pressures. The stagnation pressure
recovery was approximately 87.5 percent for all sections.

INTRODUCTION

At the turn of the century, the newly realized potentialities of
steam turbines led, among other things, to intensive empirical research
into the proper shaping of impulse turbine blades or buckets for use
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with supersonic inlet velocities. (See reference 1.) The bucket shapes
developed at that time, when little was known about supersonic flow other
than the existence of the Prandtl-Meyer and Rankine-Hugoniot relations,
are still the basis for design of modern impulse steam-turbine buckets
since no premium has been placed upon achieving the ultimate in
performance.

The present-day revolution in aircraft propulsion has brought about
a demand for high-performance compressors and turbines and has instigated
an intensive research in the field of high-pressure-ratio compressors
and turbines with large flow-handling capacities, small frontal area,
light weight, and high efficiency. With the development of the theory
of the supersonic axial-flow compressor by Kantrowitz (reference 2) a
new field of great promise in compressor research was opened. In par-
ticular, the entirely supersonic rotor and diffusing stator combination
suggested by Kantrowitz and discussed by Ferri (reference 3) holds
promlise of pressure ratios per stage of 6 to 10 with efficiencies
estimated from two-dimensional cascade tests to be between 70 and 80 per-
cent. Part of the problem to be overcome for compressors of this type
i1s the design of efficient rotor-blade sectibns to turn the air super-
sonically through large angles with very little or no reaction (that is,
static-pressure rise), a requirement identical to that for efficient
impulse turbine buckets. The understanding of supersonic flow has
progressed rapidly in recent years. Liccini (reference 4) has demon-
strated that turning passages very much more efficient than those cited
by Stodola are now possible. The analytical determination of the blade
shape for each design by the graphical characteristic method of solution
and check testing in cascade, however, is laborious. The purpose of
this paper is to present an anlytical method for the design of two-
dimensional related sections such that the selection of a blade for
particular rotor conditions may be made quickly and easily and its
performance deduced from tests of representative sections in cascade.

The principal part of the turning, in what are called vortex
impulse sections, is accomplished by concentric streamlines with a
vortex-type distribution of velocity for which an analytical potential-
flow solution of the equation of the characteristic or Mach lines has
been developed by A. Busemann. A transition section at the leading
part is used to set up this vortex flow and is duplicated at the rear
of the symmetrical blade to return the flow to the required uniform
exit condition. The resulting sections are related to one another so
that changes in the design variables, that is, design inlet and exit
Mach number, blade surface Mach numbers, and turning angles can be
investigated independently in cascade. Inasmuch as most practical
vortex sections contract the flow, it was necessary to investigate

“analytically the supersonic starting problem. In addition, several
methods of thickening the vanishingly thin leading and trailing edges
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which are a result of the assumption of shock-free flow are suggested
for practical compressor-blade application.

The effects of the boundary layer upon the potential-flow solution
were obtained experimentally by several cascade tests of typical impulse
blade sections at an inlet Mach number of 1.57.

SYMBOLS
A area
A% area when flow is sonic (for isentropic flow)
a speed of sound
a¥ speed of sound at point in flow for which the Mach number
equals 1.0
CL 1ift coefficient
Cp gpecific heat at constant pressure
C reduction of maximum flow rate due to curvilinear flow
Cc* nondimensional chord (chord/r*)
G¥ nondimensional blade spacing (2nr/nr¥)
K nondimensional vortex constant
* -
k = % 74
M Mach number (V/a)
M* nondimensional velocity ratio (V/a*)
m rate of mass flow
m/T* mass-flow parameter
n number of blades in a rotor
P static pressure

0
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stagnation pressure

vortex-flow parameter

radius from center of rotation of a rotor

radius of sonic velocity streamline in vortex field
radius in vortex field

nondimensional radius in vortex field (R/r*)
radius ratio (R¥/Ry¥)

projection of added thickness normal to axial direction

(fig. 9(1v))
temperature
rotational velocity of rotor
component of velocity in x direction
component of velocity in y direction
velocity
maximum velocity of flow for given stagnation conditions

=

norndimensional distance in x direction (x/r¥)

nondimensional distance in y direction (y/rx)

inlet-flow angle, angle between relative flow and normal
to rotor leading edge

ratio of specific heats
leading-edge wedge angle
turning angle

Mach angle

supersonic property angle, angle through which flow must
expand from M = 1.0 to given Mach number
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v ratlo of average outlet velocity to inlet velocity

p density

o solidity (C*/G*)

) angle between vortex radius vector and x axis, measured

positive clockwise

¢' direction of flow in vortex field, measured positive clock-
wise from x axis

P3/PO stagnation pressure recovery
Subscripts

a axial direction

e entrance condition

i undisturbed inlet condition
1 lower or concave surface

u upper or convex surface

0 stagnation

8 sonilc

2 exit condition

A prime mark denotes conditions after normal shock.

Blade-Section Development

To turn a gas flow through the large angles necessary in supersonic
compressor- or turbine-blade passages, a vortex type of flow can be
utilized if the inlet surface 1s properly shaped to convert the uniform
inlet velocity into that corresponding to vortex flow and vice versa at
the exit. The desirability of using a vortex type of flow 1s evident
when it 1s realized that the maximum loading for a given peak surface
pressure is achieved by uniform upper and lower surface pressures attained
through the use of vortex flow. The labor involved in obtaining a solu-
tion for a blade profile is reduced because for vortex flow the equation
of the Mach lines can be found and, as will be shown, only the transition

CONFIDENTTAL
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arcs need to be determined. The fact that the blades so developed are
part of a related family is advantageous.

Supersonic vortex-flow theory.- As is well known, (for example, see
reference 5), supersonic vortex flow is an irrotational flow the stream-
lines of which are concentric circles; with a constant velocity along
any particular streamline. The velocity in turn varies inversely with
radius.

The general vortex equation

VR = Constant

can be rewritten

MRy = COMSTENL _ ) o

Restricting the flow to the supersonic realm will limit R* +to values

between \/%—i—% and 1.0 with a flow variation shown schematically in

figure 1. Since the magnitude of the velocity and its direction is
known at any point, the inclination of the Mach waves through any given
point may be determined as a function of R¥* as shown subsequently.

Since the velocity is normal to the radius (see fig. 2), the Mach
wave inclination is @' +u or @ + 5tH where

U = arc sin =

and

M- DMK
(7 +1) - (7 - 1)me2

2
*< - -
so that the Mach wave 1lnclination is ¢ + = % arc sin ka + 1R (r - 1)

- 2

A

The equation of the Mach lines may be found by integration since the
slope is a function of ¢ and R¥., The resulting integral equation has
been solved in terms of M¥*. Rather than develop the direct solution,

CONFIDERTIAL.
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use may be made of the fact that the Mach lines are characteristic lines
and that a functional relation between velocity direction @' and
velocity ratio M¥ exists along a characteristic line (equations 81
and 89, reference 6). Since M¥ = ﬁ&, the equation of Mach lines can

be written in polar form as

1 fr+1 |(7-l)
= = At A,
¢ 5 T arc sin R*2 Y| +

arc sin Ey + 1)R*2 -] + Constant

The foregoing development is based upon work done by A. Busemann
(unpublished). The Mach wave network in the supersonic vortex field
for 4° incremental changes in the value of the constant is shown in
figure 3 as originally prepared by Busemann.

Generation of transition arcs.- The flow entering a blade section
agsumed to be uniform, supersonic, and of constant entropy must be
deflected by uniquely shaped boundaries to set up the desired vortex-
flow pattern. In the following exposition, it is convenient to discuss
the flow in terms of flow direction, @', and the property angle, V.
Tables of functions for two-dimensional flow of a perfect gas have been
published in many texts, but, for ready reference, the values of M,
M*, p, and R* as functions of Vv for 7 = 1.40 are presented in
table I. -

The inlet value of V., must be reduced by means of compression
waves to the selected value of Vv; on the concave surface and generally
increased through expansions to the value V,; on the convex surface of
the vortex part of the blade. Along a line where @' = 0, compression
waves (shown in fig. 4 as solid lines) have a negative slope and expan-
sion waves (shown dashed), a positive one. The flow (see fig. 4) must
be normal to the radial line through the initial point of the most
clockwise-spaced concentric arc. Since both surfaces must turn the
flow an equal amount,

Vo - V3 OB = vy - v

or
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where A¢ is the displacement angle between the initial points of the
concentric arcs.

If the start of concave circular arc is assumed to be on the
y* axis, then the true vortex flow is bounded by the circular-arc
surfaces ard the expansion wave through ¢l' = 0 on the concave surface
and the compression wave which passes through ¢u' = A¢ on the convex
surface up to their point of intersection. Along these principal char-
acteristic lines (heavier lines in fig. L4), the slope of the crossing
characteristic or Mach wave and the flow direction is known at every
point. There are expansion waves of total strength v, - vo crossing
the principal compression characteristic and total compression wave
strength of V. - vy crossing the principal expansion characteristic.

From the theory of characteristics as applied to supersonic flow,
the direction and velocity of the flow are known to vary only across a
characteristic line. When characteristics are given a finite strength,
the solution of a flow problem takes the form of a network of quadri-
laterals. The flow parameters within each quadrilateral are assumed
constant. Thus, in the present problem, the transition arcs are
generated by straight-line elements parallel to the flow within the
adjacent gquadrilateral or trilangle formed by the principal and crossing
characteristics and the transition arc itself starting from the circular
arcs at ¢l‘ = 0 and ¢u' = A¢ and proceeding 1n the counter-clockwise
direction until parallel with the inlet flow. Where necessary, for
example, nonsymmetrical sections, the exit transition arcs at the trailing
surfaces of the blade are generated in a like manner about a radius
labeled ¢l' = 0 with the exception that signs of all flow angles @'

are changed.

An illustrative example of a particular design is shown in figure &4
for an assumed inlet Vo, of 8% and v; and v, equal to 0° and 20°,

respectively. In each bounded region of flow there appear two numbers,
the upper one of which 1s the flow direction ¢', the lower one the
property angle V. The strength of each wave is taken to be 2° so that
the transition arc is composed of straight-line elements deflected 2° at
the intersection wlth a characteristic line.

The coordinates of a number of transition arcs obtained algebraically
for small increments of ¢ are presented in table II for convex surfaces
and in table III for concave surfaces., Each of the arcs originates on
the y¥ axis for which ¢' = 0 and its length is dependent upon the
inlet value of V. The range of values of Ve, vy, and v, presented
i1s thought to cover foreseeable applications for turbine- or compressor-
blade section.

§ CONFIDENTTIAL
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Blade-section layout.- The shape of any particular section is a
function of inlet and exit Mach numbers as well as total turning angle
and Mach number on the circular-arc surfaces. For a symmetrical profile,
the turning angle 6 1is equal to twice the air inlet angle Be. The
concave and convex circular arcs subtend central angles of 6 - 2(ve - Vi)
and 6 - 2(vy - Vg), respectively.

Once the design parameters have been selected, the flow channel
can be constructed quite simply. The circular-arc radius for the
selected values of VvV and V, are obtained from table I and the
coordinates of the transition arcs are computed from values given in
tables II and III transformed by standard trigonometric means through
an axis rotation of 6/2 + (V1 - Vo) and 8/2 + (Vg - V) degrees for
the concave and convex surfaces, respectively. The convex transition
arc is extended by means of a stralght line parallel to the inlet or
exit flow direction to the rotor leading- or trailing-edge line. To
obtain the blade form, the convex surface is displaced a distance G¥%,
as shown in figure 5, so that the two surfaces are tangent at the leading
and trailing edges. Examples of several symmetrical blade sections
obtained in this manner are presented in figure 6.

Asymmetric sections may be designed similarly by treating the inlet
and exit sections as separate layout problems. To obtain a sharp
trailing edge, the exit area normal to the flow can be obtained from
the familiar cascade relation

Ap . cos Be

Ao - cosze - 8)

To satisfy the equation of continuity, the design exit value of Vv must
correspond to that of an isentropic area change Ag/Ae.

Although a flow passage can be constructed for any selection of
flow parameters, provided that the sum of transition turning on either
surface does not exceed the total turning angle desired, there are
solutions for which a compressor- or turbine-blade section does not
exist because the surfaces are interchanged resulting in negative thick-
ness. For most practical selections of vy, v,, and 6, however, no

difficulty 1s encountered.

Not only the blade shape but the solidity o as well is predeter-
mined by the selection of the surface Mach numbers for a given rotor
design. The solidity of a symmetrical blade can be determined analyti-
cally without the necessity of graphical construction. The necessary
equations to find the solidity of a blade are given in appendix A.
Since the mechanical design of a rotor due to blade-hub attachment

EMELASSEE"
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difficulties as well as the aerodynamic performance depend upon solildity,
figures 7 and 8 have been brepared for illustrative purposes. The
variation of solidity with turning angles for the case where

Ve = %(vu + V1) and each property angle 1s constant in turn is presented

in figure 7. Figure 8 presents results for the case where the inter-
dependence of the property angles 1s removed. The lowest solidities
are achleved when the divergence of surface Mach numbers or loading 1is
greatest. For preset surface Mach numbers the solidity is affected
slightly by a variation of inlet Mach number.

From the aerodynamic standpoint, low solidity is desirable because
of lower total frictional losses; however, separation losses and out-
let flow-divergence angles will undoubtedly be greater as the pressure
rise on the convex surface at the exit transition section becomes greater
at low solidities. The designer's selection of a reasonable solidity to
yleld the highest efficiency is facilitated by the use of vortex sections
since the profiles are related to one another and therefore performance
estimates may be made by interpolation of the results of cascade tests
of representative sections.

Method of Creating Finite Leading-Edge Angle

For use in a practical compressor or turbine the supersonic vortex
sections have a serious disadvantage because of the extremely thin
leading edges which are subject to rapid wear due to high-velocity solid
particles in the stream and to deflection due to the pressure differential
existing on the two surfaces. This difficulty may be circumvented by
the means outlined subsequently to create a finite wedge angle at the
leading and tralling edges.

Subsonic axial velocity component.- Kantrowitz (reference 2) has
shown that for subsonic axial velocities when expansion waves are
generated along the entrance region (in this case the forepart of the
convex surface) an oblique compression shock of strength equal to the
total expansion strength will be created to obtain a steady-state condi-
tion. A small angle wedge therefore can be placed on the convex surface
followed by either an expansion corner as shown in figure 9(a) or a
convex arc so placed that all the expansion waves are upstream of the
following blade. The expansion waves originating at B and the compres-
sion shock from A being of the same family will effectively cancel each
other a short distance upstream of the cascade for axial velocities near
sonic. The wave pattern in figure 9(a) composed of finite-strength
expansion waves is seen to be completely cancelled within the confines
of the figure for a group of blades. As in the case of an isolated
airfoil in supersonic flow, the waves cancel completely only at an
infinite distance from the source of disturbance so that in reality it
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is only at a great distance from the cascade that the undisturbed Mach
number is My. As the fluild approaches the cascade it oscillates with
increasing amplitude about M3y as a mean. At the entrance the flow 1s
turned and expanded to the inlet value M, different than My to
satisfy the equation of continuity.

The graphical procedure used to determine M; is outlined 1n
reference 2; however, the accuracy of the method is limited and it fails
in solving the inverse problem of interest to the compressor designers,
namely, that of determining Mg and Be when M; and By are given.

A simpler method capable of analytic solution 1s presented. When
the oblique shocks are assumed to be relatively weak, the flow process
may be regarded as isentropic. The last infinitesimal strength wave in
the expansion fan about B to be cancelled (see fig. 9(b)) will be the
Mach wave associated with the undisturbed upstream Mach number Mj. If
that Mach wave is BD, then a line FD which is tangent at D to the
limiting streamline AC entering the passage must be parallel to the
direction Mj, and the area normal to the flow across BD 1s equal to
to Ay. The extension of line FD will pass through point E, since a
line joining the points E and B 1s parallel and equal to G¥.

Because AC 1is a streamline and the flow in the expansion fan 1s
isentropic, the change in flow direction B3 - B must equal Ve - v§
to satisfy the equation of continuity.

To solve the problem analytically, B can be shown to be a func-
tion of Mach number since

- " G¥/cos By

Ae (G* - ‘t)COS Be t \cos Be
_—= 1
Ay G* cos Bi

and

1 Mi*z 7-1
Ly 2

=g

e

=

E 3

=

url
*.
~
|+ |+
i

=
AR v |

Use may be made of the values of v and f% as a function of Mach

number tabulated, for example, In reference 6 to determine the desired
unknown through a trial-and-error selection of Mach numbers. Since the

CROWTDRRIAL
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solution is a function of t/G*, the wedge angle is not uniquely deter-
mined. Care should be exercised in selecting a suitable angle such
that the shock is attached and the position of the expansion corner
permits the last wave of the fan to precede the following blade.

Ancther method utilizes a shock wave originating at the leading
edge of the concave surface which will fall inside the passage and
therefore will not affect the flow upstream of the leading edge. The
value V. (see fig. 9(c)) can be obtained from the oblique-shock equa-
tions (reference 6) when v; and wedge angle 3 are known. The points
A and B are the start of the transition arcs of a passage designed
for an inlet Mach number equivalent to v, and for a turning angle
6 = 2(Bi - 8) for a symmetrical section. From the point A, a straight
line tangent to the transltion arc is projected far enough forward so
that the shock wave caused by deflecting the flow at point C intersects
the polnt B on the opposite surface. The line BD 1s parallel to Mj
creating an exterior corner of &9 at B. The basic leading-edge shape
for v, 1s indicated by EAF.

From practical considerations, the wedge angle & should be fairly
small to yield a range of rotational speeds for which the shock will be
attached as well as alleviating the possible flow separation at B due
to shock - boundary-layer interaction.

Supersonic axial-velocity component.- When the axial component of
the relative velocity is supersonic, another method of creating a
leading-edge wedge 1s to have the shock originate on the leading edge
of the convex surface by taking care to select a wedge angle sufficiently
small to insure the shock location within the passage (see fig. 9(4)).
The passage 1n this case 1is designed for an inlet Mach number equivalent
to Ve and a turning angle 8 = 2(Bj + &) for a symmetrical section.
The surface AC 1s parallel to the undisturbed inlet velocity M; and
at A the surface is turned sharply to cancel the leadlng-edge shock.
The thinner boundary layer at A, as compared to that at point B
(fig. 9(c)) and the centrifugal force will materially aild in preventing
flow separation on the concave surface at A. TFor this reason the
performance would be expected to be superior to the second subsonic
axlal-velocity-component case.

For the symmetrical section, the sharp corners at the tralling
edge will give rise to trailing expansion waves and obligue shocks. To
a first-order approximation the exit Mach number will equal the entering

M; and the turning angle 6 = 28; for a true impulse condition.
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Conslderation of Starting Contraction Ratio

In the design of a passage for supersonic flow, it is important to
examine any converging portion to insure that supersonic flow can be
started (see reference 7). Most practical vortex sections contract the
flow. 1In this discussion, consideration 1s given only to those cases
when the minimum area occurs between the concentric circular arcs. For
given values of v; and v, 1t is possible to determine analytically

the greatest design value of vg for which supersonic flow starts in
the passage. The flow can not be assumed one dimensional as in refer-
ence 8 because of the large velocity gradlent between the channel walls.
Since the starting Mach number depends both upon the stagnation-pressure
loss through the normal shock and the maximum mass flow through the
minimum section, the reduction of mass flow due to curvilinear flow
must be obtained. The maximum inlet-design Mach mumber will therefore
be that design value of Mach number for which the maximum rate of flow
can be accommodated when the normal-shock loss and the large veloclty
gradient in the concentric-arc passage are taken into consideration.

When a normal shock is assumed to be spanning the entrance at the
instant of starting as shown in figure 10, the gain in entropy through
the shock will be constant so that the flow downstream of the shock will
still be irrotational. If the circular portion of the passage 1s suf-
ficiently long, a vortex type of flow will be generated. The vortex
equation expressed nondimensionally (developed in appendix B) is

r -1 jL s = K = Constant
2 aq

The immediate problem is to determine the constant K = K., for
which the rate of flow is a maximum for a given radius ratio and stagna-
tion conditions. The derivation of the necessary equation i1s presented
in appendix A and the resulting values of Kp,, as a function of the
ratio of the concave to convex radius 1s given in figure 11. The reduc-
tion in maximum mass flow C compared to that in a one-dimensional
passage of width equal to the distance between the two radii is pre-
sented in figure 12.

The mass flow in the passage at the instant of starting when the
normal shock spans the Inlet is equal to the flow rate when started.
The physical area contraction as a function of inlet Mach number and
V, and V3 may readily be determined for the started condition. If

equated to the maximum contraction ratio for starting, when the flow
reduction factor C 1is taken into consideration the maximim selected
value of Vg, for which the passage can be designed to start, can be

“ONCERSS e



14 ) URUFALENTIAL NACA RM L52B06

found. The derivation of the equations and method of attack are outlined
in appendix C. The limiting values of inlet v, as a function of Vi

and V; calculated as Indicated in appendix C are presented in figure 13.

The limiting inlet Mach number, however, is not valid for the thick-
ened leading-edge sections which need to be investigated individually.

Experimental Apparatus and Procedure

The blade models are mounted between glass side walls in the test

section of the 2%-—by 2-inch supersonic cascade tunnel (fig. 14). This

tunnel is a closed-return type in which the flow is produced by a
compressor previously used as a supercharger on a V-1650-7 Packard air-
craft engine. The power to operate the compressor 1s furnished by a
300~-horsepower direct-current motor. Upstream of the test section is a
2L~ by 2h-inch settling chamber containing three sets of fine screens.
Downstream of the test section is a two-dimensional diffuser of approxi-
mately €° divergence angle followed by return ducting incorporating two
aircraft type of water-cooled radiators to control the alr temperature.
An air bleed-off valve in the settling chamber is used to control the
settling~-chamber pressure at from 1 to approximately 2 atmospheres. All
tests herein reported, however, were made with atmospheric stagnation
pressure. Schlieren photographs of the flow were made with the use of
the usual two parabolic mirror systems.

Two blades forming one passage were used per set. The passage
contours are accurately machined to a tolerance of 0.002-inch. 1In
order to gain structural rigidity near the leading and trailing edges,
the outer surfaces were arbitrarily designed to have finite edge angles
and therefore the blade profiles are not similar nor do they represent
any vortex section.

A view of the test section with one sidewall removed is presented
in figure 15. The asymmetric supersonic nozzle was designed for an
exit Mach number of 1.57 equivalent to a v of 14°. A solid wood
fairing on the convex side and a flexible, adjustable extension on the
concave side were used to guide the flow outside of the test passage.
The blade models, of ol _inch span, were mounted on dowel pins press-
fitted Into bushed holes in one of the glass windows. The angle of
attack of the blades could be varied with respect to the nozzle by
rotating the glass. 1In this way the Mach number entering the passage
could be varied within limits imposed by the appearance of detached bow
waves on the leading edges.
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Four sets of blades of different solidities were chosen for testing.
Figure 16 is a photograph of one of these blades showing the static-
pressure orifices and scratch marks used to create Mach wave disturbances
in the flow. All of the blades had a turning angle of 120°. Solidities
and the theoretical VvV values for the concentric axis and entrance
conditions are as follows: :

Vv V. A%
Blade 1 u e Solidit Fi
(deg) | (deg) | (deg) oY e
I 8 20 14 5.69 6(b)
IT L 24 14 3.64 6(c)
ITT 0 o8 14 2.59 6(a)
v 0 2k 13 2.70 6(e)

In order to prevent the familiar condensation shock phenomenon
caused by expanding moist air, the settling-chamber temperature was
maintained at a high temperature by manual regulation of the cooling
water flow. The operating compressor-pressure ratio for any configura-
tion was obtained by increasing the motor speed until all test section
pressures remained unchanged with a further increase in speed. Total
and static pressures were measured inside the passage just before the
end of the concave blade either by single- or multiple-tube probes.
Flow surveys were made at several spanwise stations for several inlet
Mach numbers. Chordwise static-pressure orifices were located at the
midspan of both passage surfaces. In addition, three spanwise static-
pressure orifices on both surfaces were located at the chordwise posi-
tion where the survey measurements were made. The inlet total pressure
and temperature were measured in the settling chamber. All pressure
measurements were recorded by photographing a multiple-tube mercury
manometer. ‘
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RESULTS AND DISCUSSION

The figures and tables presenting the test results for the four
passages are tabulated below:

Blade
Type of data I II ITI Iv
Figure
Static-pressure
distribution 17(a) 17(b) 17(c) 17(a)
Schlieren photographs 19 20 21 22
Total-pressure 18(a) 18(b) | 18(c) 18(a)
recoveries
Table
Weighted average total- Iv(a) IV(b) V() v(4)
pressure recoveries

An examination of the stagnation pressure recoveries at the exit
of the blade passages (fig. 18) makes it obvious that the flow is not
two dimensional. The boundary layer has "piled up" in toward the center
of the convex surface. As in reference 4, there is evidence of circula-
tory boundary-layer flow down the side wall to the convex surface and
inward toward the center of the convex blade. An explanation of this
phenomenon can be deduced by a conslderation of the centrifugal forces
and boundary-layer effects along the side wall. Out in the free stream,
the centrifugal force caused by curved streamlines is just balanced by
a positive pressure gradient (toward the concave surface). In the wall
boundary layer, however, this pressure gradient is greater than the
centrifugal force; thus the flow moves down the side walls and inward
on the convex surface. For low-aspect-ratio blades such as for these
tests, the side-wall boundary-layer inflow effects are felt completely
across the span at the exit of the blades. Two-dimensional flow at
the spanwise center of the blades could be more closely approached by
using large-aspect-ratio blades to minimize the extent of this boundary-
layer inflow. The size of the existing equipment, however, prevented
the use of large-aspect-ratio blades. 1In an actual rotor, centrifugal
forces also exist in the spanwise direction and therefore the results
of these tests should be considered only as conservative indications

UGSy
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of the performance of blades in an actual rotor. The fact that the flow
is three dimensional in character in these tests should be kept in mind
when inspection is made of the schlieren photographs.

An interesting experiment which shows the effect of this boundary-
layer inflow was conducted by placing two boundary-layer fences on the
convex surface of blade II, placed l/h inch from the glass wall. Each
fence consisted of a thin plate l/h inch high and extending from 10 to
100 percent of the chord. Comparing the pressure recoveries near the
convex surface of this modified blade (fig. 18(e)) with the same blade
(fig. 18(b)) shows that the fences have reduced boundary-layer accumula-
tion and separation. These particular data should be considered prelim-
inary in nature as static-pressure measurements necessary to correct
for shock losses were taken only at the blade surfaces.

Blade I was tested at a slightly higher than design inlet Mach
number. This higher inlet Mach number was necessary to prevent shocks
in the outer channels, caused by the configuration of the tunnel, from
extending ahead of the blades. The static pressures on the surfaces of
the blades were higher than design. This effect may be due to the
thickening of the boundary layer in this narrow channel. The pressure
rise at the rear part of the passage is explained by the slight flow
separation on the convex surface as seen from the schlieren photographs
(fig. 19(a)), and the consequent diffuser effect due to reduced flow
areas.

Static-pressure distributions on passage II are in good agreement
with the predicted values except at the rear part of the blade where
separation had its usual effect. A study of midspan pressure recoveries
indicated a decrease in pressure recovery at the convex wall for an
increase of inlet Mach number corresponding to a change of v, of 10,

(fig. 18(v)).

Supersonic flow in the passage formed by blade III could not be
started at the design inlet Mach number of v equal to 14°. The inlet
Mach number had to be increased to v value of approximately 18°.

Figure 21(a) shows a schlieren photograph of the passage in an unstarted
condition. All data presented for this blade were taken at an off-design
inlet Mach number. As seen from the schlieren photograph in figure 21(b),
the boundary layer separated from the convex blade surface at approxi-
mately the 30-percent-chord station, but was apparently reattached a
short distance downstream in a manner typlcal of laminar boundary layer.
The usual three-dimensional-flow effects are noted from the schlieren
photographs and pressure recoveries.

In figure 13, it can be seen that, for a v, of 28° and a vj of

0, the maximum design entering Mach number is 14.4°. Blade III, there-
fore, should start at its design inlet Mach number of v equal to 140,

LSRR
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In the derivations of the equations used to plot figure 13, however, the
effects of the boundary layer have been neglected. The presence of
boundary layer or flow separation would decrease the maximum mass flow,
and thus decrease the maximum design entering Mach number. Since

blade IITI was designed with an entering Mach number very close to the
1imit, it is not surprising that viscosity effects prevented it from
starting at a v of 14O,

The inlet Mach number for blade IV is greater than design by the
equivalent of a change in v of 2°. Nosing down the blades, however,
caused the strong shock in the outer bypass channel to extend ahead of
the convex-surface blade. Whether this result was caused solely by the
tunnel configuration or by the fact that the passage would not start at
a lower Mach number was not determined. It should be noted that this
blade 1s designed close to the limiting design maximum inlet Mach number.
The static-pressure distribution is in reasonable agreement with pre-
dicted values except for the effects of boundary-layer accumulation
and separation at the rear of the passage.

The variation of the mass-weighted stagnation-pressure recovery for
all blades was small. (See table IV.) An approximaté average recovery
of 87.5 percent was obtained for all sections tested. Examination of
an individual passage shows a large variation of pressure recovery at
the various span positions which is caused by three-dimensional flows.

A comparison of the blade loading GCL for the four blades given
indicates that the experimental loading is approximately 90 percent of
the theoretical value except for blade number I in which the excellent
agreement should be disregarded in view of the marked divergence between
predicted and measured pressures.

oCy,
Blade
Theoretical Measured
I 1.77 .77
II 1.68 1.50
III 1.71 1.54
v 1.76 1.62

Schlieren photographs shown in figures 19 to 22 give an indication
of the flow condition in the blade passages. It is interesting to note
in figure 19(c) and figure 22 the close correlation of the theoretical
vortex-wave pattern, shown by the dotted line, and the actual resulting
waves. The shock waves at the leading edge and in the passage are known
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to be weak. This weakness is apparent by the rapid dissipation of the
downstream reflections and the "roof top" behavior of the boundary layer
upon meeting the shock wave on the convex blade surface. This phenomenon
is typical of a laminar boundary layer, that 1s, rapid thickening and
separation of the boundary layer upstream of the shock and creation of
expansion waves as the boundary layer 1is rapidly thinned behind the
shock. The magnitude of the increased boundary-layer thickness, for

such flows, is a function of shock strength (reference 8).

The existence of compression or expansion waves at the exit of the
passage can change the boundary layer upstream in the passage, and thus.
to some extent affect the separated region in the passage. This phenom-
enon acts much the same as the shock before the head of the total-
pressure probe in figure 19(a) which causes the boundary layer to thicken
upstream. Although it was impossible with the existing equipment to
change the downstream pressure appreciably, the downstream pressure could
be varied somewhat by moving the flexible wall. An example of this
result is shown in the schlieren photograph in figure 19(c) where the
angle of the trailing-edge shock has been changed approximately 10° and
the flow leaving the blade 1s closer to the required exit direction. No
appreciable changes were noted in the pressure recovery due to changing
the downstream pressure by this method.

The results of the four-blade passages followed similar trends with
small variations in over-all results. In general, the discrepancies
between theoretical and experimental pressure distributions may be
explained by the boundary-layer inflow and flow separation. These two
effects acting together caused the pressure to rise in the region of the
trailing edge. The data indicate that these discrepancies could be
reduced by using suitable devices to minimize the boundary-layer inflow
from the side walls. Very little data are available to compare with
the present results in order to determine whether the vortex-blade
sections are as efficient as any other type. Some data are contained
in reference 4, in which a pressure recovery of 95 percent was experi-
enced for a 90° turning passage of solidity 3.12, an inlet Mach number
of 1.7, and designed for a static-pressure drop across the blade row.
The data are not exactly comparable because of the difference in turning
angle, Reynolds number, and aspect ratio. Stodola (reference 1) presents
steam-bucket performance in terms of the velocity ratio V¥, which 1is
equal to the ratio of the average outlet velocity to the inlet velocity.
The value of ¥ from the present tests is approximately 92 percent;
whereas the upper limit for the data in reference 1 is about 80 percent
when the inlet and outlet static pressure are assumed to be equal.

Moving the concave blade of set I away from the convex blade along
the chord bisector line in order to determine what effect misalinement
would have on the performance reduced the midspan pressure recovery from
95 to 84 percent for the condition shown in figure 23. The reason for

oy
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this result is obviously due to the large separation and standing shocks
in the passage. The results of this part of the investigation point out
the desirability of aerodynamically designing the passage even though
the behavior of the boundary layer modified the predicted results.

CONCLUSIONS

- A method for designing shock-free supersonic impulse compressor
and turbine blades in which the blade passage is essentially the space
between two concentric circles is presented. Since the shock-free
supersonic flow between two concentric circles is a vortex flow, the
problem 1s one of designing an entrance to the circular-arc passage
which will convert the uniform entering flow to the required vortex
distribution and vice versa at the exit. The coordinates of many transi-
tion arcs have been computed and are included in tabular form. The
resulting sections are related to one another so that changes in the
design variables can be investigated independently in cascade and the
performance of a section for particular rotor conditions may be deduced
from tests of representative sections.

Three methods of increasing the thickness particularly near the
leading and trailing edges are presented although not experimentally
investigated. The ability of the passage to start supersonically was
investigated and the limiting design inlet Mach number for starting
was determined for given surface Mach numbers.

Four different blade passages designed to turn the flow 120° were
investigated in cascade at a Mach number of approximately 1.57. The
specific conclusions resulting from such tests are as follows:

1. The chordwise static-pressure distribution agrees reasonably
well with design values. The discrepancles are explained by side-wall
boundary-layer accumulation and flow separation.

2. The cascade flow was not two dimensional because of the circula-
tory boundary-layer flow.

3. The weighted stagnation pressure recovery for the entire span
is approximately 87.5 percent for all sections.

L. There is little data to indicate whether these pressure
recoveries are better or worse than sections differently designed
although the recoveries are superior to any of the steam turbine bucket
results reported by Stodola.

5. The desirability of aerodynamically designing the passage 1s
borne out by the results obtained when the blades are incorrectly spaced.

Jiaing nn -
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Future research on the vortex impulse sections to determine the
performance for a range of design variables and effects of leadling-edge
thickness should be undertaken because of the promising results obtained.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.
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APPENDIX A
CAICULATION OF THE SOLIDITY OF A SYMMETRICAL BLADE

The solidity of a symmetrical blade can be determined analytically
by using the equations developed in appendix C.

Equation (C7b) in
appendix C can be rewritten
A A
e e
el v Q(Rl* - Ru*) (A1)

From figure 5, it can be seen that

__ Ae/rx
o* sin(% f ﬁe) (a2)

or for a symmetrical blade since 9 = 2Be

]
1

G¥ = E%SZE;E (A2a)

Combining equations (A2a) and (Al)

o e QB - Byx)
G* = = (A3)
cos 9/2

For a symmetrical blade, the equation of the symmetrical axis (see fig. 5)
is

X ctnE/e - (ve - vlﬂ + Y% =0 (Ak)

where the X* and Y* axes are ag defined for tables II and I1T.

The perpendicular distance from this axis to the end point Xl*,
Yl* of the concave surface can be shown by analytic geometry to be
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%)E = Xp¥* COSI:% - (Ve - vlj] + Y% SinEg— - (ve - VlE] (A5)

When equations (A3) and (A5) are used, the solidity for a symmetrical
blade is thus given by

* 0 * 6 6
2 Xl cos|3 - (Ve -V + Yl sin 3 - (ve - Vl)] cos 7
g = -

A
K% Q(Rl* - Ru*)

(A6)

which can be easily solved by using values from table III, (fig. 24)
and the values from the following equation which have been published
in many texts (for example, reference 6).

s
A Y - 1Me2+]_2(7-l)
e _ L=
A% T M, 7+ 1

2
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APPENDIX B

CAICULATION OF THE REDUCTION OF THE MAXIMUM RATE OF

MASS FLOW DUE TO CHANNEL-WALL CURVATURE

For most practical cases, the minimum passage width which pre-
determines the maximum rate of mass flow for given stagnation conditions
of pressure and temperature occurs between the concentric circular-arc
portions of the throat. When only this curved reglon of flow 1is con-
sidered, the boundary layer being neglected, an expression may be derived
by expressing the reduction in the maximum rate of mass flow due to
channel-wall curvature as a function of radius ratio.

When the normal shock spanning the entrance to the blade passage
is assumed to be of constant strength (fig. 10) the flow within the
passage can be considered irrotational, with a greater entropy than
that upstream of the normal shock. For the flow to be irrotational
and in radial equilibrium downstream of the shock if bounded by suf-
ficiently long concentric-circular walls, it must satisfy the vortex
equation

VR¥ = Constant (B1)

Since the flow is adiabatic and isentropic

2 1
P, __7r Po (B2)
~7-1p 2 7 -1p
and
. o
‘%= 07 (B3)
p Po’
combining equations (Bl), (B2), and (B3) and solving for p gives
1 AL
p = po' 1 - 7 -1 V2 7-1 p '[1 - K h-1 (Bk4)
2 o) 2
2a, R¥
y - 1 VR* . .
where k = s and pPg equals the stagnation density behind the
o)

normal shock.
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The mass flow parameter m¥ is therefore

1
Ry¥ Ry¥* 2\r-1
m 1 1 ' k 2 k
m*—r—*—R*deR*=R*pol-R*2 7_laoﬁdR* (B5)
u

for 7y = 1.&, equation (B5) 1s reduced to an analytically integrable
equation such that

2)7/2 2 (r%2 - k2)3/2

2 o .py1/2
R%Z - L (r%? - kB
¥ = o 1y5 ka4 b _
m Po Vg- 84 5k2R*5 15 R*3 5 R¥
R4
5 o\1/2 1
- pw (B¥2 - }2‘ A logIE* + (R¥® kE)l/Q] (B6)
ok Ru*

For all real flows, k 1s less than R¥. 1In order to determine kpsx,
that is, that value of k which will yield the maximum rate of flow
between R1*¥ and R,*, equation (B5) is differentiated under the
integral sign and equated to zero; thus,

for 7y = 1.k

(BT) -

Ry S LA
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In order to reduce the labor involved in determining the value of k
for all possible values of Ry¥ and Ry¥, equation (Bl) may be made
nondimensional.

L= s =X (88)
2 aq
where
R¥* Ry* k
8 = Rl* sl =1.0 8y = §I¥ K = §I¥

Equation (B7) is now

(2 %l () ()
G5 K

Knax” ® Y =
y (32 _ Kmaxe)l/E _ sr(se ) Kmax2)1/2 )
S Hnx?
1.0
logl:s + (52 - Kmaxe)l/e:] =0
8

u

The resulting values of K ., for all possible radius ratios are
presented in figure 11.

Equation (B6) may be rewritten

1.0
2 2\5/2
= |5 0o'a Kpx (¢ K:-';_X) (89)

u

The maximum one-dimensional mass flow through a passage of width equal
to distance between the radii is
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Po'a0 2
1 y + 1

<i + L= >7—1
2 (B10)

Combining equations (B9) and (B10) to determine the reduction in maximum
mass flow C, due to flow curvature

p*a*(1l - 8y) = (1 - sy) = 0.5786p,"a,(1 - s;)

(B11)

1.0
2 2\5/2
C=1-3.8643 7= R K’;a")

Su[_ s
Su

The value of C 1s presented in figure 12 as function of Sy

The position of the sonic radius sg for any glven radius ratio
may be found upon substitution of a¥ for V in equation (B8). Thus

Y + 1
8g = Kmaxv;—‘_—i

The sonic radius 1s very close to the geometric mean radius such

that Sg =~ VE; and may be used to determine K;., to a good approxima-
tion for gases whose ratios of specific heats are other than 1.4. Kpax
determined by this method is shown dashed in figure 11, and its effect
upon mass flow reduction is plotted in figure 12. The maximum error

in Kpax which occurs at the minimum radius ratio for gases of 7y = 1.3,

1.4, and 1.5 is l%, 2, and 2% percent, respectively.

MOk fomr ERL
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APPENDIX C

CALCULATION OF THE MAXIMUM DESIGN ENTERING MACH

NUMBER FROM STARTING CONSIDERATIONS

Immediately preceding the starting of a particular passage, a
shock will span the irlet. After the shock has passed downstream through
the minimum section the rate of mass flow is unaltered. The inlet
opening for any Mach number can be obtained when the mass flow through
the circular passage 1s known. The maximum inlet design Mach number
for any particular circular passage will therefore be that maximum Mach
number for which the maximum rate of flow can be accommodated when the
normal-shock loss is taken into consideration.

The rate of mass flow for a developed vortex can be written as

Rl*
B = oV aR* (c1)
r* Ru*
or
* R %
1 1
m pVv A
—_— = —— dR¥* = — dR¥* ce
p¥a¥r¥ - p¥a¥ - A¥ (c2)
u u
and
o\ L
A¥* Y + 1 y - 1 oly-1
827 - M -
A M ( 2 2 Mx
and

R¥ =

Rewriting egquation (C2) gives

1
x|y +1 _ »y-1 2)7-_1
% = u(?- z ame (c3)
pXa¥r¥ My * M¥

Vo GO
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When inlet and vortex flow parameters are equated

1
y + 1 y - 1 2)7-1
* - %
m _ PeVele _ M ( 2 2 M )

= am* (ch)
pXg¥r¥ pXaXr¥ M. % Mm%
1
or

Yy + 1 Yy -1 2
A »* - Mx )
e p¥xa¥ ( 2 2 %
r* - peve M* dM (C5)

The area contraction is

Ae

;_; . Ae Ml*MLl*
Rl* - Ru—)(- % Mu-)(- - Ml*

1
* [y +1 7y - 1 2)7:T
- Mx* M, %M ¥
_prax [ ( 2 5 o T
PeVe M, * M* M* - Mp¥
Let
1
I (721-751‘“‘*)”1
= — %
Q MF - MF | MR dM (cT)
1
which is a function of the vortex surface Mach numbers only. TFor
y = 1.4
* 1/2
g - N (6-M*2)5/2+(G-M*2)3/2_(6-M*2)/ -
T Mg - Mp¥ 280 28 1.555
*
o\1/2 Mu
2.45 + |6 - M¥
1.571 log 2 (M* ) (cTa)
M, *¥
1
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thus the area contraction is

o*a¥ o (c7b)
peve

The value of Q 1s given in figure 24 as a function of Vi and V.

The starting maximum contraction ratio (from reference 8) is
modified by the flow reduction factor C so that starting contraction
ratio

_ B4
C.R. B K—( c) (c8)
B3
where N is the total-pressure recovery through a normal shock and
0
Ae *a¥
¥ is equal to £ and both are a function of inlet Mach number Mg

pee

Equating (CTb) and (C8) to determine the maximum design value of
such that the contraction is equal to the starting contraction ratio gives

Since

F3 (7 2 _> e 5(0 AP 4 2) -3:2

Po 6 2. 4M2

has been tabulated as a function of M in reference 6 the maximum
design Mach number for which the section will start can readily be
obtained.
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TABLE I
MACH NUMBER, MACH ANGLE AND RADIUS RATIO AS FUNCTION
OF v FOR vy = 1.k40
v b M M* R* v u M Mx* R*
0.0 90.00 {1.000 | 1.000 |1.000 15.0| 38.55| 1.605| 1.428 | 0.7003
.1 79.46 | 1.017 | 1.014 | .9862 || 16.0| 37.61| 1.639| 1.448 | .6906
.2 76.75 | 1.027| 1.023 | .9775 || 17.0] 36.72] 1.673 | 1.467 | .6817
5| 72.10 {1.051 | 1.0k2 | .9597 || 18.0] 35.87| 1.707| 1.486 | .6729
1.0} 67.57 |1.082| 1.067 | .9372 || 19.0] 35.06| 1.741| 1.505 | .6645
1.5 64.45 11,108 | 1.088 | .9191 || 20.0| 34.29| 1.775| 1.523 | .6566
2.0 {62.00 {1.133| 1.107 | .9033{] 22.0| 32.83| 1.84k | 1.559 | .6L1k
2.5159.95 [1.155 | 1.124 | .8897 (]| 2k.0| 31.49] 1.915| 1.593 | .6277
3.0(58.18 {1.177 | 1.1k1 | .8764 || 25.0] 30.85| 1.950 | 1.610 | .6211
3.5156.61 {1.198 | 1.157 | .8643 || 26.0 | 30.23| 1.986 | 1.627 | .6146
h.0|55.20 | 1.218 | 1.172 | .8532 ]| 28.0|29.05| 2.059 | 1.659 | .6028
4.5 153.92 |1.237 | 1.186 | .8432|]| 30.0| 27.96| 2.134 | 1.691 | .591k
5.0 | 52.7% | 1.257 | 1.200 | .8333 || 32.0]26.90} 2.210| 1.722 | .5807
6.0{50.62 |1.294 | 1.227 | .8150 || 34.0 | 25.91} 2.289 | 1.752 | .5708
7.0 | 48.75 | 1.330 | 1.252 | .7987 |] 35.0 | 25.43| 2.329 | 1.767 | .5659
8.0 { k7.08 [ 1.366 | 1.277 | .7831 || 36.0 | 24.96] 2.369 | 1.781 | .5615
9.0 | 45.57 {1.400 | 1.300 | .7692 || 38.0| 24k.07| 2.452 ] 1.810 | .5525
10.0 | Lh.18 | 1.435 | 1.323 | .7559 || 0.0 | 23.21| 2.538 | 1.838 | .5kk1
11.0 | b2.89 | 1.469 | 1.345 | . 7435 || 45.0 | 21.21| 2.764 | 1.905 | .5249
12.0 | 41.70 {1.503 | 1.367 | .7315 || 50.0|19.39} 3.013| 1.967 | .508%4
13.0 | 40.58 {1.537 1 1.388 | .7205 || 55.0 | 17.71| 3.287 | 2.025 | .4938
14.0 | 39.54 |1.571 | 1.408 | .7102 || 60.0 | 16.16| 3.594 | 2.080 | .4808
KA
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TRUER

COORDINATES OF TRANSITION SECTIONS FOR CONVEX BLADE PASSAGE 7y = 1.0

-4 H Ve _ -X* Q * - ” Ve ~X* _ Y* -8 _ ve -X% m *
vy = ko vy = 36° v, = 32°
o] 40 o] 0.5k [¢] 36 0 0.5614 5 27 0.0959 0.5766
1 39 .0186 .5439 1 35 L0191 5612 6 26 L1140 5749
2 38 .0370 5434 2 34 .0380 . 5607 7 25 .1318 5728
3 37 0549 .5426 3 33 .0565 5599 8 2k .1Lg2 -5705
i 36 L0724 5416 L 32 L0746 .5588 9 23 L1664 . 5680
5 35 089U .5ho2 5 31 092k .557L 10 22 .1833 5651
6 3L L1061 .5386 6 30 1097 .5558 11 21 . 2000 5621
7 33 L1226 .5368 7 29 L1268 .5538 12 20 .2163 5587
8 32 .1388 5346 8 28 L1436 5516 13 19 .2325 .5552
9 31 1546 .5323 9 27 1601 . 5491 14 18 .2L8k L5513
10 30 L1701 .5297 10 26 L1764 .5LEL 15 17 2640 L5473
11 29 .1855 .5268 11 25 192k 5435 16 16 2795 5432
) 12 28 L2007 .5238 12 24 .2082 .5403 17 15 .2945 .5389
: 13 27 .2156 5205 13 23 2237 5368 18 14 3093 .5342
. 14 26 230k 5169 14 22 .2391 .5331 19 13 .3239 .5293
. 15 25 .2k50 .5132 15 21 .25k2 .5292 20 12 .3382 5242
16 2k .2593 .5092 16 20 . 2690 L5851 21 11 .3522 .5190
. 17 23 .2735 5050 17 19 .2838 5207 22 10 .3658 L5137
18 22 . 2876 .5005 18 18 .2983 5162 23 9 .3789 .5082
- 19 21 L3014 . %959 19 17 .3126 L5114 2k 8 .3915 .5027
20 20 .3151 k911 20 16 3267 . 5064 25 7 .ho3s L4973
i 21 19 .3286 . 4860 21 15 . 3406 .5012 26 6 L1ks 4920
22 18 .3k19 4808 22 14 . 35k2 Ligs8 -
B 23 17 3551 4753 23 13 .3675 .k903 vy = 30°
- 2k 16 . 3706 4686 24 12 .3806 .h8L6
25 15 . 3859 L4616 25 11 L3934 4788 o] 30 0 0.5913
26 14 .3959 L4569 26 10 %058 L7209 1 29 .0203 L5911
27 13 4056 4520 27 9 RSk .h669 2 28 .oho3 5906
28 12 h176 L4558 28 8 491 k610 3 27 .0598 .5898
29 11 4293 4394 29 7 4399 L4551 4 26 L0792 .5886
30 10 ot k330 30 6 1499 kg5 5 25 .0980 5871
31 9 4517 RES) b .1 6 2k 1163 5854
32 8 k622 .keol W, = 34° 7 23 134 .5833
33 7 L4720 Jh138 8 22 .1522 5809
3k 6 4810 RTexe] 0 3h 0 0.5707 9 21 L1697 L5783
- 1 33 0196 L5705 10 20 1869 L5754
vy = 38° 2 32 .0389 5700 11 19 2039 L5723
3 31 L0577 . 5692 12 18 2207 . 5689
0 38 [ 0.5525 h 30 L0761 5681 13 17 L2372 . 5652
- 1 37 .0190 .5523 5 29 .oghk2 5667 14 16 .2533 .561h
: 2 36 0375 .5519 6 28 .1119 .5650 15 15 . 2692 5573
£ 3 35 .0556 L5511 7 27 .1293 .5630 16 1k .2848 5529
1 i 3b L0734 .5500 8 26 .16k 5607 17 13 .3001 . 548k
H 5 33 .0908 .5486 9 25 1633 .5582 18 12 .3150 5437
B 6 32 .1080 .5470 10 2L .1798 .5555 19 11 .3297 .5388
7 31 J12b7 5451 11 23 1961 552k 20 10 L3433 .5340
8 30 L1410 .5ho9 12 22 .2122 L5492 21 9 .3570 .5288
9 29 1572 {5405 13 21 2277 .5k57 22 8 .3710 5233
10 28 L1732 .5378 14 20 L2433 5420 23 7 .3835 .5181
11 27 .1889 5349 15 19 .2591 5379 ok 6 .3953 .5131
12 26 L2043 .5318 16 18 27he .5337
13 25 .2196 .5284 17 17 .2892 .5293 y, = 28°
14 2k 2346 .52k48 18 16 .3039 5246
15 23 .2l95 5209 19 15 L3184 .5198 0 28 0 0.6026
16 22 2642 .5169 20 1k .3327 5147 1 27 .0207 602k
17 21 .2786 5126 21 13 L3466 L5095 2 26 .oh11 .6019
18 20 .2928 .5081 22 12 . 3602 .Sok2 3 25 L0611 .6010
19 19 .3069 .503% 23 11 L3736 . k986 4 24 .0806 .5998
20 18 .3208 L4985 24 10 .3865 4930 5 23 .0998 .5983
21 17 .3346 4933 25 9 L3990 1873 6 22 .1186 .5965
22 16 L3481 4880 26 8 k110 4816 T 21 L1372 59kk
23 15 361k 4825 27 7 Jh223 L4759 8 20 .1553 .5920
24 14 L3745 4768 28 6 k328 4705 9 19 1732 5894
25 13 .3872 k110 e . 10 18 .1908 5864
26 12 .3997 4650 vy = 32° 11 17 .2081 .5832
27 11 k120 1589 12 16 2251 5797
28 10 4238 4528 0 32 0 0.5807 13 15 .24k18 .5760
29 9 L4353 Lhh66 1 31 0199 . 5805 1k 1k .2582 5721
30 8 Jhh62 Bloh 2 30 .0395 5800 15 13 .27h3 5679
31 7 L4565 343 3 29 0587 5792 16 12 .2900 .5636
32 [ 4660 .4o85 N 28 L0775 .5781 17 11 . 3054 .5590
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TABLE ITI

COORDINATES OF TRANSITION SECTIONS FOR CONCAVE BIADE PASSAGE 7 = 1.%0

-6 H Ve — X _ * -# m v, ~ X% _ * -¢ _ Ve 4 -X* “ *
vy = o° = 2° vy = 6°
0 o] 0 1.0000 0 2 [ 0.9035 10 16 0.3223 0.7859
0.2 0.2 L0116 1.0000 1 3 .0326 .9032 11 17 .3588 L7791
0.4 0.4 .0192 9999 2 i L0667 .9023 12 18 .3962 LTT15
0.6 0.6 .0260 .9999 3 5 .1018 .9008 13 19 346 .7630
0.8 0.8 .0347 .9998 I 6 L1377 .8986 14 20 L7ho L7535
1.0 1.0 .0607 .9992 5 7 L1743 .8957 15 21 5146 .Th30
2.0 2.0 .0953 .9983 6 8 .2118 .8921 16 22 . 5564 L7314
3.0 3.0 .1302 9967 7 9 .2k99 .8878 17 23 L5994 L7186
k.0 h.o L1Th .9965 8 10 .2888 .B826 18 2k L6438 .06
5.0 5.0 L2184 .9930 9 11 .3085 8767 19 25 .6897 .6893
6.0 6.0 2632 .9862 10 12 .3690 .8699 20 26 L7371 6725
7.0 7.0 .3086 .9810 11 13 RATIN 8622 21 27 . 7861 L6541
8.0 8.0 .3546 .9750 12 1k 4528 .8536 22 28 .8369 L6341
9.0 9.0 .BO15 9680 13 15 L4962 .8l 23 29 .8896 .6123
10.0 10.0 L4491 .9850 14 16 .5h07 .8333 e
11.0 11.0 L4915 .9522 15 17 .5863 .8215 vy = 8°
12.0 12.0 5409 .9lk20 16 18 .6332 .8085
13.0 13.0 L5975 .9295 17 19 L6814 .T9k2 0 8 0 0.7833
14.0 14.0 .69l 9171 18 20 .T279 7795 1 9 .0278 .7831
15.0 15.0 . 7025 .9033 19 21 L7788 762k 2 10 .0562 .7823
16.0 16.0 L7571 .8882 20 22 8344 .Tu28 3 11 .0853 . 7810
17.0 17.0 .8132 .8716 21 23 .8888 .ok i 12 .1150 L7792
18.0 18.0 8707 8534 22 24 9450 .7003 5 13 L1453 .T768
19.0 19.0 .9299 .8336 23 25 1.0031 L6762 6 14 L1764 LT739
20.0 20.0 .9909 .8120 24 26 1.0632 6501 7 15 .2081 .T702
21.0 21.0 1.05h0 . 788k 25 27 1.1256 6216 8 16 . 2406 . 7659
22.0 22.0 1.1192 7627 26 28 1.1904 .5907 9 17 .2739 .T610
23.0 23.0 1.1865 L7348 27 29 1.2576 .5571 10 18 .3080 .T553
24.0 2.0 1.2560 .T046 - 4l 11 19 .3430 . 7488
25.0 25.0 1.3309 .670L vy = 4° 12 20 .3788 .7h15
26.0 26.0 1.%059 L6346 13 21 k157 L7333
27.0 27.0 1.4810 .5972 0 I 0 0.8536 1k 20 4537 .72k2
28.0 28.0 1.5617 5552 1 5 .0305 .8533 15 23 Lot L71h1
29.0 29.0 1.6457 .5095 2 6 L0619 8505 16 2k 5331 7029
- 3 T L0941 .8511 17 25 5746 6906
vy = 1.0° A 8 1272 8491 18 26 L6173 67T
5 9 .1610 .8L6k 19 27 L6617 6622
0 1.0 o] 0.9374 6 10 L1954 8431 20 28 . 7076 L6460
0.2 1.2 . 00662 .937h T 11 .2306 .8391 21 29 L7552 6282
0.4 1.k .01343 937k 8 12 . 2666 .83kh S ]
0.6 1.6 .02036 9373 9 13 .3033 .8289 vy = 10°
0.8 1.8 .02738 .9373 10 1k .3ho7 8226
1.0 2.0 04165 .9370 11 15 .3792 .8154 o] 10 o] 0.7559
2.0 3.0 .07091 .9362 12 16 .1188 80Tk 1 11 .0269 1557
3.0 k.0 .108% .93k6 13 17 4593 . 7984 2 12 L0542 L7550
4.0 5.0 L1467 .9322 1k 18 .5008 . 7884 3 13 .0821 .T537
5.0 6.0 .1857 9291 15 19 .S5h3k ST L 1k .1106 <7520
6.0 7.0 L2254 .9253 16 20 L5872 L7653 5 15 .1399 .7h97
7.0 8.0 . 2659 .9207 17 21 .6323 7519 6 16 .1698 .Th68
8.0 9.0 .3070 .9153 18 22 .6788 L7372 T 17 . 2004 .Th33
9.0 10.0 . 3489 .9090 19 23 L7267 L7212 8 18 .2316 -7392
10.0 11.0 .3918 .9019 20 24 L7761 L7037 9 19 D667 Rrainn
11.0 12.0 4355 .8938 21 25 8272 L6846 10 20 .2972 . 7288
12.0 13.0 .800 .88L7 22 26 .8802 L6637 11 21 .3310 . 7225
13.0 k.0 .5257 8746 23 27 .9350 6410 12 22 L3651 L7156
4.0 15.0 5725 .8633 2k 28 .9918 .6163 13 23 koot LTOTT
15.0 16.0 L6204 .8509 25 29 1.0507 .5894 14 24 43Tk .6989
16.0 17.0 6697 .8373 i | L1 25 LT .6885
17.0 18.0 . 7203 .8223 vy = 6° 16 26 .5165 6777
18.0 19.0 L7233 .8059 <l 17 27 .5550 L6663
19.0 20.0 .8259 . 7880 0 6 o] 0.8152 18 28 .5967 .6531
20.0 21.0 .8810 . 7684 1 T .0290 .8150 19 29 .6399 .6386
21.0 22.0 .9381 LThTL 2 8 L0587 .B1h2 20 30 6846 6228
22.0 23.0 .9969 L7239 3 9 .08%1 .8129 21 31 L7311 L6054
23.0 2h.0 1.0578 6987 L 10 .1203 .8110 22 32 LTT9% . 5864
2k.0 25.0 1.1208 6713 5 11 .1522 .808L 23 33 .8296 .5656
25.0 26.0° 1.1860 L6416 6 12 1847 .8053 2 3k .8820 .5428
26.0 27.0 1.2288 6093 T 13 .2178 8015 25 35 .9365 5179
27.0 28.0 1.3241 .57h2 8 1k .2518 . 7970 26 36 .9934 L4908
28.0 29.0 1.3970 .5362 9 15 . 2866 L7918 27 37 1.0529 .L611
) 28 38 1.1152 .5286

%
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TABLIE III

NACA RM 152B06

COORDINATES OF TRANSITION SECTIONS FOR CONCAVE BLADE PASSAGE 7 = 1.40 - Concluded

- Ve -X¥ T* -¢ Vo -X* T -8 Vg -X# T*
v = 129 v; = 16° v = 22°
0 12 0 0.7317 6 22 | 0.1549 0.6824 0 2p 0 0.6k416
1 13 .0259 L7315 7 23 .1829 L6792 1 23 .0228 L6Lh1L
2 14 L0523 .7308 8 24 L2116 L6754 2 2k .0L59 6408
3 15 .0793 .T296 9 25 .2h1a L6710 3 25 . 0697 .6398
L 16 . 1069 7279 10 26 L2714 .6659 L 26 .0939 .6383
5 17 L1351 L7257 11 27 .3027 L6601 5 27 .1188 .6363
6 18 .16ko L7229 12 28 .3349 L6536 3 28 L1khy .6339
ki 19 .1936 7195 13 29 .3681 .6h62 7 29 L1706 .6309
8 20 .2238 L7156 1k 30 4023 .6380 8 30 .1976 L6273
9 21 L2549 L7109 15 31 4378 .6288 9 31 .25k 6232
10 22 L2868 L7056 16 32 kT4 6186 10 32 2541 .6183
11 23 .3195 .6995 17 33 5127 L6073 11 33 .2838 .6128
12 oL .3532 L6926 18 34 .5522 5948 12 3L .31kl . 6066
131 25 .3879 689 11 19 | 35 | .5933 5811 1 13 | 35 . 3460 .5996
1k 26 .b237 L6763 20 36 L6361 ,5659 1h 36 .3789 .5917
15 27 . 4606 L6668 21 37 L6809 .5492 15 37 h13e .5828
16 28 4987 L6562 22 38 L7275 5308 16 38 L4488 5729
17 29 .5381 .65
18 | 30 5789 L6317 v =18° vy = 26°
19 31 6212 L6175
20 32 L6651 .6020 0 8]0 0.6729 0 26 0 0.6147
21 33 .7108 .5849 1] 19 .0239 6727 1 27 .0218 L6145
22 3k L7583 .5661 2 20 0481 6721 2 28 .okl 6139
23 1 35 .8077 5457 3 | a1 .0729 .6710 3 | 29 . 0668 .6130
24 36 .8592 .5232 4 22 .098k L6694 L 30 L0901 6115
25 37 .9132 . 4986 5 23 .1243 .667Th 5 31 L11k1 L6096
26 38 .9697 Ryalg 6 2k L1509 L6648 6 32 .1388 .6073
= - 7 25 .1783 L6617 7 33 .16k2 60Uk
vy =1 8 | 26 .206% .6580 8 | 3k .1903 .6009
9 27 L2352 .6537 9 35 .2172 . 5969
0 14 o] 0.7102 10 28 2649 L6487 10 36 .2ks51 .5922
1 15 .0252 . 7100 11 29 .2955 .6430 11 37 .okl 5868
2 16 .0509 7093 12 30 L3271 .6366 12 38 .30h1 .5807
3 17 LOTT1 . 7082 13 31 .3597 L6294 .
4 18 .1038 L7065 1k 32 .3934 L6213 vy = 30°
5 19 L1312 .T0kL 15 33 LLo8l L6122
6 20 L1592 |- L7017 16 34 RIS L6021 0 30 0 0.5913
T 21 .1879 .6984 17 35 .5022 .5910 1 31 .0210 L5911
8 o2 217k L6945 18 36 .5h1k .5786 2 32 . 0423 .5905
9 23 2476 .6300 19 37 5822 . 5650 3 33 L06k2 .5895
10 ol L2787 .6848 20 38 6ok . 5499 i 3k 0868 .5881
11 25 . 3106 .6789 21 39 6682 .5337 5 35 .1098 .5863
12 26 L3435 6722 6 36 .1337 .5840
13 27 377h .66hT W = 20° 7 37 L1584 .5812
14 28 ok 6563 8 38 .1839 5778
15 29 LL8s L6469 [¢] 20 | O 0.6566 9 39 . 2094 5Th0
16 1 30 4858 6365 1 21 .0233 6564
17 31 525 L6251 2 22 .0k70 .6558 vy = 34°
18 32 .5648 L6124 3 23 L0712 L6547
19 33 L6065 5984 i 2k L0960 L6532 o 34 o 0.5707
20 3L L6496 .5831 5 25 .121% 6512 1 35 .0202 .5705
21 35 6946 .5663 6 | 26 <1475 L6487 2 | 36 .0k09 .5700
22 36 .Th15 5478 7 27 L1TH3 6456 3 37 L0622 .5691
23 37 .7906 5275 8 o8 .2017 .6k20 b 38 L0842 56T
2k 38 .8419 .5051 9 29 .2300 .6378 5 39 .1058 5660
10 30 .2591 .6329
vy = 16° 11 | 31| .o8ge L6273 vy = 36°
12 32 . 3203 .6210
0 16 0 0.6907 13 33 . 3525 .6139 0 36 0 0.561k4
1 17 L0246 .6905 1k 3 .3858 .6059 1 37 .0212 .5612
2 18 0495 .6898 15 35 hoo2 .5970 2 38 .0418 L5607
3 19 otk9 L6887 16 36 560 .5870
L 20 .1009 L6871 17 37 4933 .5760
5 21 .1276 .6850 18 38 .5322 .5637
NACA
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TABILE IV

WEIGHTED AVERAGE PRESSURE RECOVERIES (PERCENTAGE)

(a) Blade T

Source

Pressure recovery

Entire span

1.20 inches from
1.00 inches from
0.80 inches from
0.60 inches from
0.40 inches from
0.20 inches from

wall
wall
wall
wall
wall
wall

88.
89.
9k,
90.
85.
81.
8L,

NFEO WO WO

(b) Blade II

(c) Blade III

Source

Pressure recovery

1

Entire span
.13 inches from
.93 inches from
.73 inches from
inches from
.33 inches from
.13 inches from

OO OO O
\J
w

wall
wall 1

wall

wall

wall
wall

Source Pressure recovery
Entire span 87.6
1.13 inches from wall 84.8
0.93 inches from wall 90.5
0.73 inches from wall 89.5
0.53 inches from wall 81.3
0.33 inches from wall 87.4
0.13 inches from wall 90.1

(d) Blade IV

Source Pressure recovery
Entire span 86.9
1.20 inches from wall 88.7
1.00 inches from wall 88.6
0.80 inches from wall 81.8
0.60 inches from wall 83.2
0.40 inches from wall 92.0
0.20 inches from wall 85.3
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Figure 2,- Geometry of vortex field.
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Figure 3.- Characteristic line network for supersonic vortex flow according
to A. Busemann. 7 = 1,40,
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Figure 4.- Construction of tramsition arcs.
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«— axis of symetry
Rotor
leading
edge Rotor
tralling
edge
Relative
inlet flow
Ve
Be
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Figure 5.- Construction of typical symnietrical blade section.
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Figure T.- Variation of solidity with turning angle for spécial case where
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Ve = §(vu + Vl)'
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(a) subsonic axial velocity component, external waves,
Figure 9.- Methods of increasing section thickness.



Undisturbed flow

(b) Flow geometry for external waves.

Figure 9.~ Continued.
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(c) Subsonic axial-velocity-component
shock originating on concave surface.

(d) Supersonic axial-velocity component.

Figure 9.- Concluded.
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Figure 10.- Diagram of flow in the channel at the instant immedistely
before starting.
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— — — Koy determined by geometric method
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Figure 11,- Value of Kpax 8s function of radius ratio for y = 1.40,
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Figure 13.- Maximum design-inlet value of Ve for starting as a function
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Figure 16.- Close up of blade I showing the static-pressure orifices and
scratches.
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Figure 17.- Pressure distribution along concave and convex surfaces.
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Figure 18.- The variation of the stagnation-pressure recovery near end
of passage.
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(a) Total-pressure tube in place.
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Figure 19.- Schlieren photographs of the flow in the passage of blade I.
Ve = 150-
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(c) Flexible wall moved closer to trailing edge of blades,

Figure 19.- Concluded.
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Figure 20.- Schlieren photographs of the flow in the passage of
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Figure 21.- Schlieren photographs of the flow
blade IIT. .
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(b) Passage started. Ve

Figure 21.- Concluded.
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L-7274L
Figure 23.- Schlieren photograph of the flow for an incorrectly spaced
pair of blades.
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Figure 2k,- Q factor for solution of maximum inlet Mach number as a func-
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